Noninvasive detection of sleep/wake changes and cataplexy-like behaviors in orexin/ataxin-3 transgenic narcoleptic mice across the disease onset.
نویسندگان
چکیده
Sleep and behavioral monitoring of young mice is necessary for understating the progress of symptoms in congenital and acquired diseases associated with sleep and movement disorders. In the current study, we have developed a non-invasive sleep monitoring system that identifies wake and sleep patterns of newborn mice using a simple piezoelectric transducer (PZT). Using this system, we have succeeded in detecting age-dependent occurrences and changes in sleep fragmentation of orexin/ataxin-3 narcoleptic mice (a narcoleptic mouse model with postnatal hypocretin/orexin cell death) across the disease onset. We also detected REM sleep/cataplexy patterns (i.e., immobility with clear heartbeat [IMHB] signals due to the flaccid posture) by the PZT system, and found that sudden onset of REM sleep-like episodes specifically occur in narcoleptic, but not in wild type mice, suggesting that these episodes are likely cataplexy. In contrast, gradual onset of IMHB likely reflects occurrence of REM sleep. In summary, we have shown that the PZT system is useful as a non-invasive sleep and behavior monitoring system to analyze the developmental aspects of sleep and movement disorders in mice models.
منابع مشابه
Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children
Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter s...
متن کاملOrexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice.
Cataplexy, a sudden unexpected muscle paralysis, is a debilitating symptom of the neurodegenerative sleep disorder, narcolepsy. During these attacks, the person is paralyzed, but fully conscious and aware of their surroundings. To identify potential neurons that might serve as surrogate orexin neurons to suppress such attacks, the gene for orexin (hypocretin), a peptide lost in most human narco...
متن کاملDevelopmental divergence of sleep-wake patterns in orexin knockout and wild-type mice.
Narcolepsy, a disorder characterized by fragmented bouts of sleep and wakefulness during the day and night as well as cataplexy, has been linked in humans and nonhuman animals to the functional integrity of the orexinergic system. Adult orexin knockout mice and dogs with a mutation of the orexin receptor exhibit symptoms that mirror those seen in narcoleptic humans. As with narcolepsy, infant s...
متن کاملHalothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents.
BACKGROUND One underexploited property of anesthetics is their ability to probe neuronal regulation of arousal. At appropriate doses, anesthetics reversibly obtund conscious perception. However, individual anesthetic agents may accomplish this by altering the function of distinct neuronal populations. Previously the authors showed that isoflurane and sevoflurane inhibit orexinergic neurons, del...
متن کاملSleeping Beauty, Mice, & Dogs: Cell Death in Narcolepsy
Sleep is important and required for the survival and normal homeostasis of vertebrates. Disturbances in the sleep-wake cycle can lead to many sleep disorders, one of which is narcolepsy. Narcolepsy is a disabling sleep disorder characterized by excessive daytime sleep, cataplexy (sudden loss of muscle tone in response to strong emotion or laughter), hallucinations, and sleep paralysis. To date,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 261 شماره
صفحات -
تاریخ انتشار 2014